

AJMAL SUPER 40

ADMISSION CUM SCHOLARSHIP TEST : 2026

AJMAL
FOUNDATION

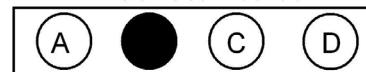
Challenger Batch (Complete Syllabus of Class XII)

Conducted by : AJMAL FOUNDATION, Hojai

AJMAL
GROUP OF INSTITUTIONS

TEST BOOKLET SERIES

A


INSTRUCTIONS TO CANDIDATES

1. Candidates are to use the OMR Answer Sheet provided.
2. It is the candidate's responsibility to write and fill in the **Application Number** (from Admit Card) and **Test Booklet Series** (from Question Paper) carefully and without any omission or discrepancy at the appropriate place in the **OMR Answer Sheet**.
3. Candidates are required to mark the correct answer choice by **shading** the circle completely with **blue or black** ball point pen. (Pen of any other colour or pencil is not allowed). For example, if the correct answer to question no. 1 is 'B' then the marking should be:

1. Wrong method

1. Correct method

4. Write your details on the OMR Answer Sheet which are asked for.
5. Only one circle, i.e. the correct one should be shaded. Shading more than one circle will render the answer invalid.
6. A candidate having completed his/her **OMR ANSWER SHEET** must hand it over, even if blank, to the invigilator.
7. An examinee must not bring any loose paper, book, etc. to the Examination Hall. Any examinee found in possession of even loose papers will be **EXPelled**.
8. An examinee must not talk to, disturb or seek help from a fellow examinee during the examination.
9. Any mechanical or digital calculating device (Smart Watch, Mobile, calculator etc.) shall not be used by the examinee during the examination.
10. No candidate will be allowed to leave the Examination Hall before completion of 3 hours.
11. For each correct answer **4** marks will be awarded and for each incorrect answer **-1** mark will be deducted.
12. Duration of the exam is **03 hours from 11:00 AM to 02:00 PM**.

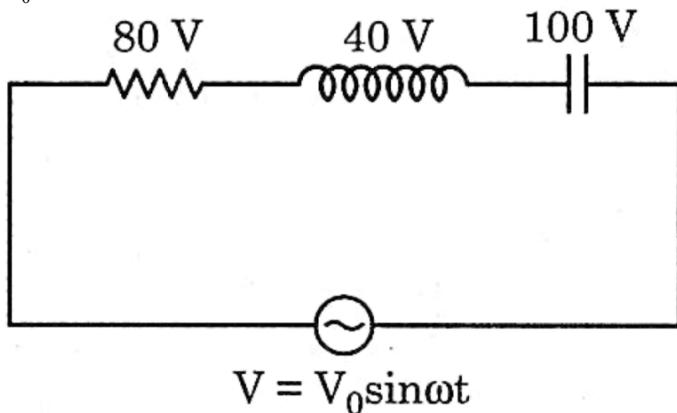
For Medical			For Engineering		
Subject	Questions	Marks	Subject	Questions	Marks
Physics	01 to 30	120	Physics	01 to 30	120
Chemistry	31 to 60	120	Chemistry	31 to 60	120
Biology	61 to 100	160	Mathematics	61 to 100	160
Total	100	400	Total	100	400

13. Contravention of any of the instruction mentioned above shall render a candidate liable for disciplinary action as per rule.
14. **Date of Result Declaration : 14 - 01- 2026 (After 9.00 PM on www.ajmalsuper40.in)**

SPACE FOR ROUGH WORK

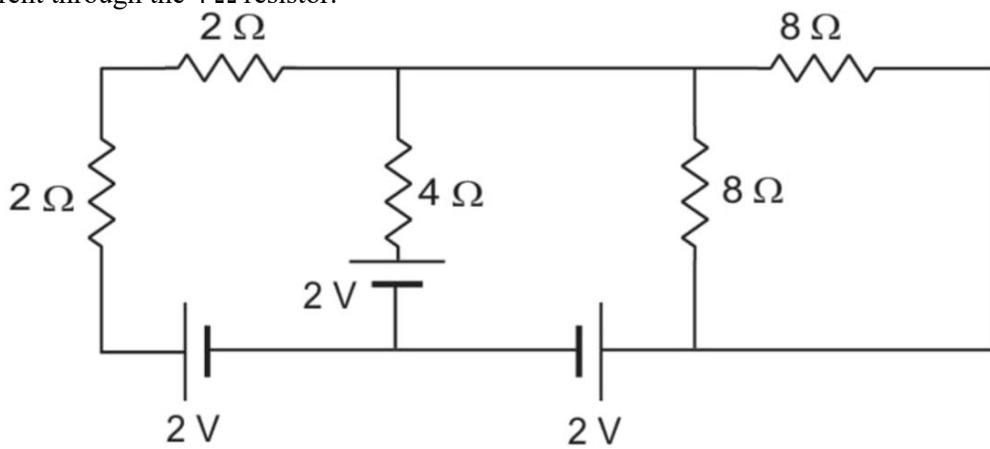
ADMISSION CUM SCHOLARSHIP TEST – 2026

CHALLENGER BATCH (Complete Syllabus of Class XII)


PHYSICS

1. A plano convex lens is made of a material having refractive index 1.6. The radius of curvature of the curved surface is 60 cm. The focal length of the lens is
 (1) 50 cm (2) 100 cm (3) 200 cm (4) 400 cm

2. Maxwell's modified form of Ampere's circuital law in free space is
 (1) $\oint_s \vec{B} \cdot d\vec{s} = 0$ (2) $\oint_{loop} \vec{B} \cdot d\vec{l} = \mu_0 I$
 (3) $\oint_{loop} \vec{B} \cdot d\vec{l} = \mu_0 I + \frac{1}{\epsilon_0} \frac{dq}{dt}$ (4) $\oint_{loop} \vec{B} \cdot d\vec{l} = \mu_0 I + \mu_0 \epsilon_0 \frac{d\phi_E}{dt}$

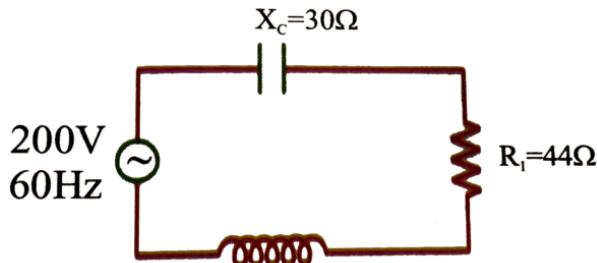

3. The electric field component of an electromagnetic wave in a medium is represented by $E_x = 0$; $E_y = 2.5 \cos[(2\pi \times 10^6)t - (\pi \times 10^{-2})x]$ N/C; $E_z = 0$. The wave is (x is in metre & t is in secs)
 (1) moving along $+x$ direction with frequency 10^6 Hz and wavelength 100 m.
 (2) moving along $+x$ direction with frequency 10^6 Hz and wavelength 200 m.
 (3) moving along $-x$ direction with frequency 10^6 Hz and wavelength 200 m.
 (4) moving along $+y$ direction with frequency $2\pi \times 10^6$ Hz and wavelength 200 m.

4. In the given LCR circuit, V_0 will be

5. The turns ratio of a step-up transformer is $1 : 20$. If the input A.C. voltage and power are $5V$ and $100 W$ respectively, then output current will be
 (1) $100 A$ (2) $20 A$ (3) $1 A$ (4) $400 A$

6. Find the current through the 4Ω resistor.

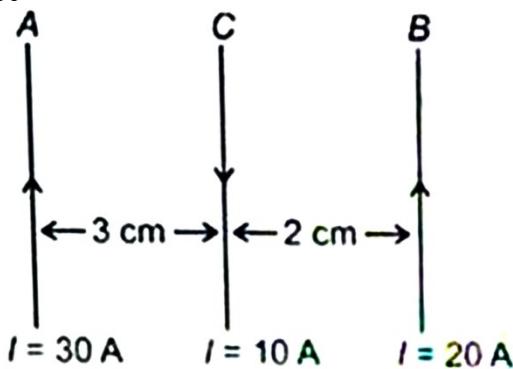
7. (1) Zero (2) 1 A (3) 2 A (4) 3 A


Statement I: If two unlike charges are brought nearer, then potential energy of system increases.

Statement II: If two charges q_1 and q_2 are separated by a distance r , then potential energy of the system is given by $U = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r}$

(1) Both Statement I and Statement II are correct
 (2) Both Statement I and Statement II are incorrect
 (3) Statement I is correct but Statement II is incorrect
 (4) Statement I is incorrect but Statement II is correct

8. A square of side L metre lies in the XY-plane in a region where the magnetic field is given by $\vec{B} = B_0(2\hat{i} + 3\hat{j} + 4\hat{k})\text{T}$, where B_0 is a constant. The magnitude of magnetic flux passing through the square is
 (1) $4B_0L^2 \text{ Wb}$ (2) $3B_0L^2 \text{ Wb}$ (3) $\sqrt{29}B_0L^2 \text{ Wb}$ (4) $2B_0L^2 \text{ Wb}$


9. A series circuit consists of a capacitor of capacitive reactance 30Ω , a non-inductive resistor of 44Ω and a coil of inductive reactance 90Ω and a resistance of 36Ω connected across a 200 V , 60 Hz line as shown in the figure. Find the power dissipated in the coil.

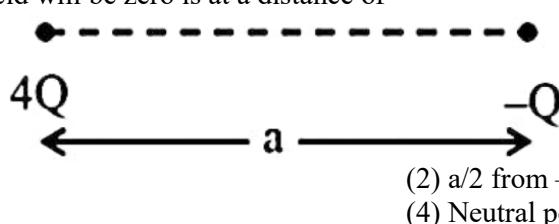
(1) 0 W (2) 176 W (3) 144 W (4) 320 W

10. In a series L-R circuit, the value of L is $\frac{\sqrt{3}}{\pi} \text{ H}$ and frequency of applied AC source is 50 Hz . If the phase difference between applied emf and current is 60° , then the value of resistance R is
 (1) 100Ω (2) $100\sqrt{3} \Omega$ (3) $\frac{100}{\sqrt{3}} \Omega$ (4) $50\sqrt{3} \Omega$

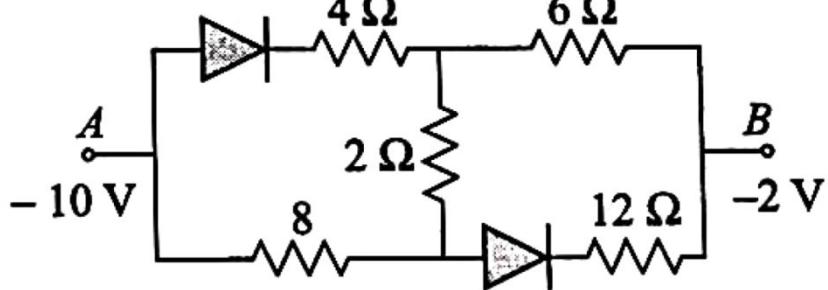
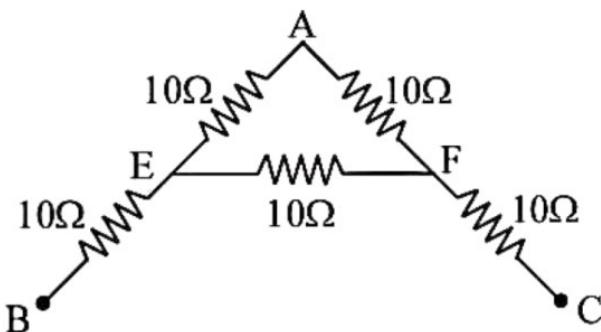
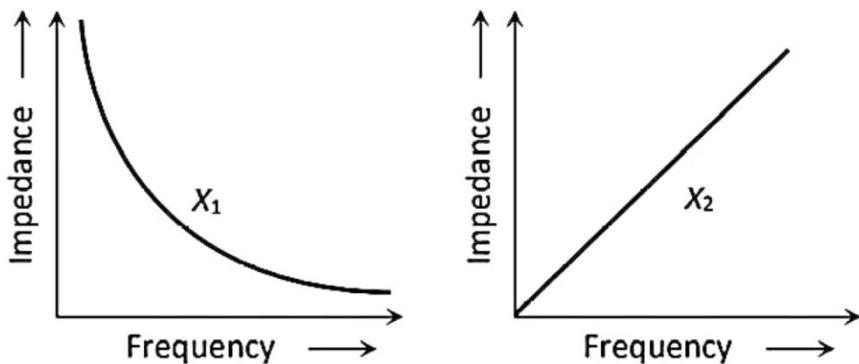
11. Three long, straight parallel wires carrying currents are placed in a plane as shown in the fig. The force acting on half metre length of wire C will be

(1) $2.5 \times 10^{-4} \text{ N}$ (2) $1.4 \times 10^{-5} \text{ N}$ (3) $3.7 \times 10^{-3} \text{ N}$ (4) Zero

12. A free nucleus of mass 2 amu at rest emits a gamma photon. The wavelength of the gamma photon is 0.01 \AA . Find the recoil speed of the nucleus.
 (1) $2 \times 10^5 \text{ m/s}$ (2) $5 \times 10^4 \text{ m/s}$ (3) $6 \times 10^4 \text{ m/s}$ (4) $12 \times 10^5 \text{ m/s}$


13. An electron is orbiting in the 4th orbit of a H-atom. If radius of this orbit is r, then de-Broglie wavelength associated with the electron is

(1) $\frac{\pi r}{2}$ (2) $2\pi r$ (3) $8\pi r$ (4) $12\pi r$




14. The total external work done to charge a spherical shell of radius R uniformly with charge Q is
 (1) $\frac{Q^2}{8\pi\epsilon_0 R}$ (2) $\frac{Q^2}{4\pi\epsilon_0 R}$ (3) $\frac{Q^2}{15\pi\epsilon_0 R}$ (4) None of these

15. An air capacitor of capacity $C = 10 \mu\text{F}$ is connected to a constant voltage battery of 12 V . Now the space between the plates is filled with a liquid of dielectric constant 5. The charge that flows now from battery to the capacitor is
 (1) $120 \mu\text{C}$ (2) $699 \mu\text{C}$ (3) $480 \mu\text{C}$ (4) $24 \mu\text{C}$

16. The point where net electric field will be zero is at a distance of

(1) $2a$ from $4Q$ (2) $a/2$ from $-Q$
 (3) a from $4Q$ (4) Neutral point not possible

(1) $\frac{20}{3}\Omega$ (2) 10Ω (3) 16Ω (4) 20Ω

25. Pure Si at 500 K has equal number of electron (n_e) & hole (n_h) concentrations of $1.5 \times 10^{16} m^{-3}$. Doping by indium increases n_h to $4.5 \times 10^{22} m^{-3}$. The doped semiconductor is of

- p-type having electron concentration $n_e = 5 \times 10^9 m^{-3}$
- n-type with electron concentration $n_e = 5 \times 10^{22} m^{-3}$
- p-type with electron concentration $n_e = 2.5 \times 10^{10} m^{-3}$
- n-type with electron concentration $n_e = 2.5 \times 10^{23} m^{-3}$

26. A magnetising field of 5000 A/m produces a magnetic flux of 5×10^{-5} weber in an iron rod. If the area of cross section of the rod is 0.5 cm^2 , then the permeability of the rod will be (in $\frac{\text{Tm}}{\text{A}}$)

- 1×10^{-3}
- 2×10^{-4}
- 3×10^{-5}
- 4×10^{-6}

27. The de Broglie wavelength of a gas molecule of mass m at 27°C is λ . Its de Broglie wavelength at 327°C will be

- $\sqrt{2}\lambda$
- $\frac{\lambda}{2}$
- $\frac{\lambda}{\sqrt{2}}$
- 2λ

28. Consider six wires going into or coming out of the page as shown in figure, all with the same current. Rank the line integral of the magnetic field from most positive to most negative taken counter clockwise around each loop shown in figure.

(1) $B > C > D > A$ (2) $B > C = D > A$ (3) $B > A > C = D$ (4) $C > B = D > A$

29. The co-ordinates of the image of point P formed by a concave mirror of radius of curvature 20 cm as shown in figure is

(1) $(13.33 \text{ cm}, -1 \text{ cm})$ (2) $(13.33 \text{ cm}, +1 \text{ cm})$
 (3) $(-13.33 \text{ cm}, +1 \text{ cm})$ (4) $(-13.33 \text{ cm}, -1 \text{ cm})$

30. In a compound microscope the focal length of the objective lens is 0.5 cm and the focal length of the eye-piece is 5 cm. The real image of the object is formed at a distance of 15.5 cm from the objective lens. If the final image is formed at a distance of 25 cm from the eye-piece, what is the magnitude of the magnifying power of the microscope?

- 180
- 0.2
- 20
- 150

CHEMISTRY

31. If the density of 1M aqueous CaCO_3 solution is 1 g ml^{-1} then its molality will be –
 (1) Greater than 1 molal (2) Less than 1 molal (3) Equal to 1 molal (4) Data insufficient

32. $\text{Cu}^{\oplus}(aq)$ is unstable in aqueous solution and undergoes simultaneous oxidation and reduction according to the Equation

$$2\text{Cu}^{\oplus}(aq) \rightarrow \text{Cu}^{2+}(aq) + \text{Cu}(s)$$

 The E° value for this reaction is ($E^{\circ}_{\text{Cu}^{2+}/\text{Cu}} = 0.34\text{ V}$ and $E^{\circ}_{\text{Cu}^{2+}/\text{Cu}^{\oplus}} = 0.15\text{ V}$)
 (1) $+0.49\text{ V}$ (2) 0.38 V (3) -0.19 V (4) -0.38 V

33. At infinite dilution and 25°C , which of the following ion has the highest conducting power in aqueous solution?
 (1) Ca^{2+} (2) Mg^{2+} (3) OH^{\ominus} (4) SO_4^{2-}

34. By passing 0.1 F of charge through aqueous CuSO_4 solution, mass of Cu metal deposited at cathode is
 (Atomic mass of $\text{Cu} = 63\text{ g mol}^{-1}$)
 (1) 31.5 g (2) 63 g (3) 3.15 g (4) 6.3 g

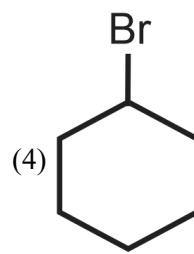
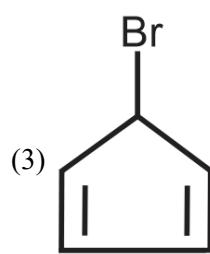
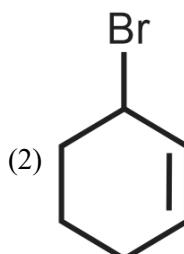
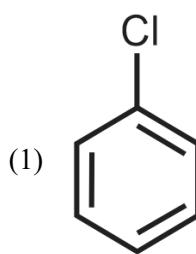
35. The energies of activation for the forward and the backward reactions for $\text{A}_2 + \text{B}_2 \rightleftharpoons 2\text{AB}$ are 180 KJ mol^{-1} and 200 KJ mol^{-1} respectively. The enthalpy change for the forward reaction is –
 (1) $+20\text{ KJ}$ (2) -20 KJ mol^{-1} (3) $+380\text{ KJ mol}^{-1}$ (4) -380 KJ mol^{-1}

36. Which of the following transition elements has the highest enthalpy of atomization?
 (1) Mn (2) Cr (3) V (4) Co

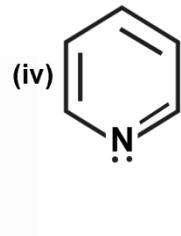
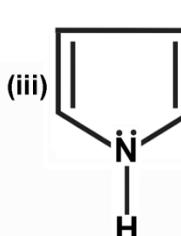
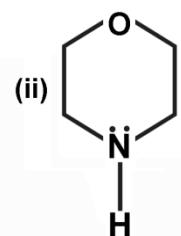
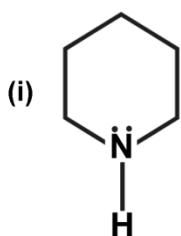
37. The purple colour of MnO_4^{\ominus} ion is due to
 (1) d – d transition (2) Polarisation
 (3) Ligand to metal charge transfer (4) Metal to ligand charge transfer

38. KMnO_4 solution in acidic medium is not decolorized by -
 (1) SO_2 (2) $\text{C}_2\text{O}_4^{2-}$ (3) CO_2 (4) I^{\ominus}

39. The cationic complex from the following is -
 (1) $\text{K}_2[\text{H}_g\text{I}_4]$ (2) $[\text{Pt}(\text{NH}_3)_2\text{Cl}_2]$ (3) $[\text{Fe}(\text{H}_2\text{O})_5(\text{NO})]\text{SO}_4$ (4) $\text{K}_3[\text{Cr}(\text{OX})_3]$





40. The π -acid ligand from the following is -
 (1) $\text{C}_2\text{O}_4^{2-}$ (2) $(\text{CH}_2)_2(\text{NH}_2)_2$ (3) CN^{\ominus} (4) EDTA^{4-}

41. Which of the following complex satisfy EAN rule?
 (1) $\text{K}_3[\text{Fe}(\text{CN})_6]$ (2) $[\text{Fe}(\text{NH}_3)_6]\text{SO}_4$ (3) $[\text{Ni}(\text{CO})_4]$ (4) Both (2) and (3)





42. The number of bridging ligands in $[\text{Fe}_2(\text{CO})_9]$ complex is
 (1) 2 (2) 3 (3) 0 (4) 1

43. The correct nucleophilicity order is –
 (1) $\overset{\ominus}{\text{S}}\text{H} > \text{HO}^{\ominus} > \text{CH}_3\text{CH}_2\text{O}^{\ominus} > \text{C}_6\text{H}_5\text{O}^{\ominus}$ (2) $\overset{\ominus}{\text{S}}\text{H} > \text{CH}_3\text{CH}_2\text{O}^{\ominus} > \text{HO}^{\ominus} > \text{C}_6\text{H}_5\text{O}^{\ominus}$
 (3) $\text{HO}^{\ominus} > \overset{\ominus}{\text{S}}\text{H} > \text{C}_6\text{H}_5\text{O}^{\ominus} > \text{CH}_3\text{CH}_2\text{O}^{\ominus}$ (4) $\text{CH}_3\text{CH}_2\text{O}^{\ominus} > \text{HO}^{\ominus} > \text{C}_6\text{H}_5\text{O}^{\ominus} > \text{HS}^{\ominus}$

44. Which of the following compound is the most reactive towards $\text{S}^{\text{N}}1$ reaction?

45. The Lewis basic strength of the following compounds is

(1) (i) > (ii) > (iv) > (iii)
 (3) (iii) = (iv) < (ii) < (i)

(2) (ii) > (i) > (iii) > (iv)
 (4) (i) > (iv) > (ii) > (iii)

46. Which of the following amine will give insoluble product in alkaline medium by reacting with benzenesulfonyl chloride?
 (1) $CH_3CH_2-NH_2$ (2) $(CH_3)_2NH$ (3) $(C_2H_5)_3N$ (4) All of these

47. The carbohydrate which will not show mutarotation in aqueous medium is -
 (1) Glucose (2) Sucrose (3) Maltose (4) Lactose

48. Which will form maximum boiling point azeotrope
 (1) $HNO_3 + H_2O$ solution (2) $C_2H_5OH + H_2O$ solution
 (3) $C_6H_6 + C_6H_5CH_3$ solution (4) None of these

49. Which of the following pairs of solution are isotonic at the same temperature?
 (1) 0.1M $Ca(NO_3)_2$ and 0.1M Na_2SO_4 (2) 0.1M $NaCl$ and 0.1M Na_2SO_4
 (3) 0.1M urea and 0.1M $MgCl_2$ (4) 0.1M urea and 0.1M $NaCl$

50. Match the laws given in the Column-I with expression given in Column-II.

Column – I	Column – II
(A) Henry's law	(p) $\Delta T_f = K_f m$
(B) Elevation of boiling point	(q) $\pi = CRT$
(C) Depression in freezing point	(r) $\Delta T_b = K_b m$
(D) Osmotic pressure	(s) $P = K_H x$

(1) A – (s), B – (r), C – (p), D – (q) (2) A – (q), B – (r), C – (q), D – (s)
 (3) A – (p), B – (s), C – (r), D – (q) (4) A – (s), B – (p), C – (q), D – (r)

51. Which of the following expressions correctly represents the equivalent conductance at infinite dilution of $Al_2(SO_4)_3$, Given that $\Lambda_{Al^{3+}}^\circ$ and $\Lambda_{SO_4^{2-}}^\circ$ are the equivalent conductances at in finite dilution of the respective ions?

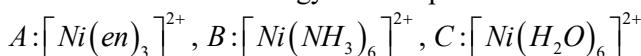
(1) $\frac{1}{3}\Lambda_{Al^{3+}}^\circ + \frac{1}{2}\Lambda_{SO_4^{2-}}^\circ$ (2) $2\Lambda_{Al^{3+}}^\circ + 3\Lambda_{SO_4^{2-}}^\circ$
 (3) $\Lambda_{Al^{3+}}^\circ + \Lambda_{SO_4^{2-}}^\circ$ (4) $(\Lambda_{Al^{3+}}^\circ + \Lambda_{SO_4^{2-}}^\circ) \times 6$

52. During the kinetic study of the reaction, $2A + B \rightarrow C + D$, following results were obtained:

Run	$[A](mol L^{-1})$	$[B](mol L^{-1})$	Initial rate of formation of D $(mol L^{-1} min^{-1})$
I	0.1	0.1	6.0×10^{-3}
II	0.3	0.2	7.2×10^{-2}
III	0.3	0.4	2.88×10^{-1}
IV	0.4	0.1	2.40×10^{-2}

Based on the above data which one of the following is correct?

(1) $rate = k[A]^2[B]$ (2) $rate = k[A][B]$
 (3) $rate = k[A]^2[B]^2$ (4) $rate = k[A][B]^2$

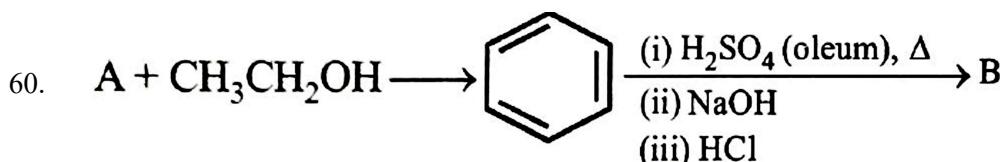

53. The rate constant for the reaction $2N_2O_5 \rightarrow 4NO_2 + O_2$ is $3.10 \times 10^{-5} \text{ sec}^{-1}$. If the rate is $2.4 \times 10^{-5} \text{ mol liter}^{-1} \text{ sec}^{-1}$ then the concentration of N_2O_5 (in mol litre $^{-1}$) is:
 (1) 0.04 (2) 0.8 (3) 0.07 (4) 1.4

54. On dissolving sugar in water at room temperature, the solution feels cool to touch. Under which of the following cases dissolution of sugar will be most rapid?
 (1) Sugar crystal in cold water
 (2) Sugar crystal in hot water
 (3) Powdered sugar in cold water
 (4) Powdered sugar in hot water

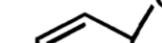
55. The EMF of which of the following cell remains constant through out its life time?
 (1) Lechlanche Cell (2) Mercury Cell
 (3) Lead storage battery (4) Both 1 and 2

56. Among the following series of transition metal ions, the one where all metal ions have $3d^2$ electronic configuration is (At. nos. Ti = 22; V = 23; Cr = 24; Mn = 25)
 (1) $Ti^{3+}, V^{2+}, Cr^{3+}, Mn^{4+}$ (2) $Ti^{+}, V^{4+}, Cr^{6+}, Mn^{7+}$
 (3) $Ti^{4+}, V^{3+}, Cr^{2+}, Mn^{3+}$ (4) $Ti^{2+}, V^{3+}, Cr^{4+}, Mn^{5+}$

57. The correct order of energy of absorption for the following metal complexes is:

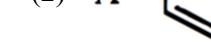


58. Match Column I with Column II

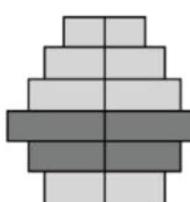
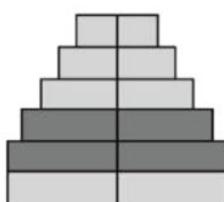
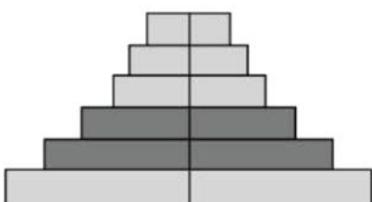

Column – I	Column – II
(A) $C_2H_6 \xrightarrow{Cl_2/UV\ light} C_2H_5Cl$	(p) Finkelstein reaction
(B) $C_6H_5NH_2 \xrightarrow[273-278K]{NaNO_2 + HCl / Cu_2Cl_2} C_6H_5Cl$	(q) Free radical substitution
(C) $CH_3Cl + NaI \longrightarrow CH_3I + NaCl$	(r) Swarts reaction
(D) $CH_3 - Br + AgF \longrightarrow CH_3F + AgBr$	(s) Sandmeyer's reaction

59. $C_6H_5 - CH = CHCHO \xrightarrow{X} C_6H_5CH = CHCH_2OH$

In the above sequence, X can be:



Consider the above reaction sequence. Identify the component A and component B:




(1) $A = C_6H_5NH_2$ $B =$

(2) $A =$ $B = C_6H_5NH_2$

(3) $A = C_6H_5N_2^+Cl^-$ $B =$

(4) $A =$ $B = C_6H_5N_2^+Cl^-$

BIOLOGY

- (1) Representation of age pyramids for human population
- (2) Representation of adaptation for human population
- (3) Representation of energy pyramid
- (4) Representation of pyramid of number

81. In man, gene producing the disease phenylketonuria also produces a number of abnormal phenotypic traits, which are collectively syndrome. This gene results mental retardation, widely spaced incisors, pigmented patches on the skin and excessive sweating, such types of genes are called :-

(1) Polygene (2) Pleiotropic gene
 (3) Lethal gene (4) Supplementary gene

82. When more individuals acquire peripheral character value at both ends of the distribution curve, this type of natural selection is called

(1) Stabilising selection (2) Directional selection
 (3) Disruptive selection (4) Progressive selection

83. During transcription, the DNA site at which RNA polymerase binds is called-

(1) Promoter (2) Regulator
 (3) Receptor (4) Enhancer

84. Change in frequency of alleles in a population indicates?

(1) Its an evolutionary population
 (2) Population is non – evolutionary
 (3) Nature support new phenotype
 (4) None of the above

85. *Monascus purpureus* is a yeast used commercially in the production of:

(1) citric acid
 (2) ethanol
 (3) blood cholesterol lowering statins
 (4) streptokinase for removing clots from the blood vessels.

86. **Assertion (A):** In human, all copulation cannot lead to fertilization and pregnancy.
Reason (R): Fertilisation can only occurs if the ovum and sperm are transported simultaneously to the ampullary region of oviduct.

(1) Both (A) and (R) are true and (R) is the correct explanation of (A)
 (2) Both (A) and (R) are true but (R) is not the correct explanation of (A)
 (3) (A) is true but (R) is false
 (4) (A) is false but (R) is true

87. "When two pairs of traits are combined in a hybrid, segregation of one pair of characters is independent of the other pair of characters". This explains :-

(1) Law of dominance (2) Law of segregation
 (3) Law of independent assortment (4) Postulate of paired factors

88. Match the hominids with their correct brain size:

(a) <i>Homo habilis</i>	(i) 900 cc
(b) <i>Homo neanderthalensis</i>	(ii) 1350 cc
(c) <i>Homo erectus</i>	(iii) 650 – 800 cc
(d) <i>Homo sapiens</i>	(iv) 1400 cc

Select the correct option

(1) (a) – (iii) – (b) – (i) – (c) – (iv) – (d) – (ii) (2) (a) – (iii) – (b) – (ii) – (c) – (i) – (d) – (iv)
 (3) (a) – (iii) – (b) – (iv) – (c) – (i) – (d) – (ii) (4) (a) – (iv) – (b) – (iii) – (c) – (i) – (d) – (ii)

89. Match the following columns and select the correct option :-

	Column-I		ColumnII
a	Dragonflies	i	Biocontrol agents of several plant
b	<i>Bacillus thuringiensis</i>	ii	Get rid of Aphids and mosquitoes
c	<i>Glomus</i>	iii	Narrow spectrum insecticidal applications
d	Baculoviruses	iv	Biocontrol agents of lepidopteran plant pests
		v	Absorb phosphorus from soil

(1) (a)-(iii), (b)-(v), (c)-(iv), (d)-(i) (2) (a)-(ii), (b)-(i), (c)-(iii), (d)-(iv)
 (3) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(v) (4) (a)-(ii), (b)-(iv), (c)-(v), (d)-(iii)

90. How many of the disease mentioned in the box require a vector for transmission of its causative pathogen?

Amoebiasis, Ascariasis, Ringworm, Diphtheria, Dengue, Malaria, Chikungunya, Filariasis

(1) Three (2) Seven (3) Four (4) Six

91. Advantage of cleistogamy is

(1) Higher genetic variability (2) More vigorous offspring
 (3) No dependence on pollinators (4) Vivipary

92. Select the correct option to complete the analogy w.r.t cancer detection.

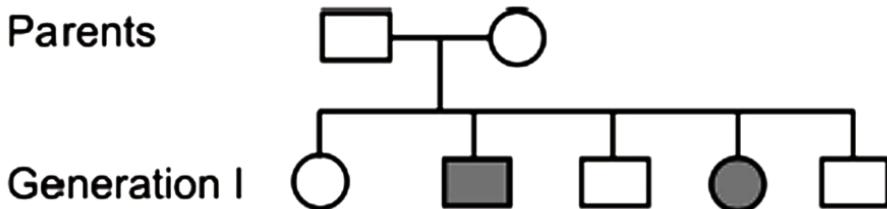
Computed tomography : X-Rays, MRI : _____

(1) Antibody (2) Magnetic field (3) Antigen (4) UV Ray

93. Which is not true for lac operon
 (1) Discovered by Jacob & Monod
 (2) Operates in catabolic pathway
 (3) Example of inducible operon
 (4) 5-structural genes are present

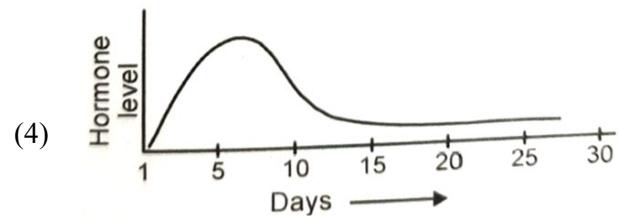
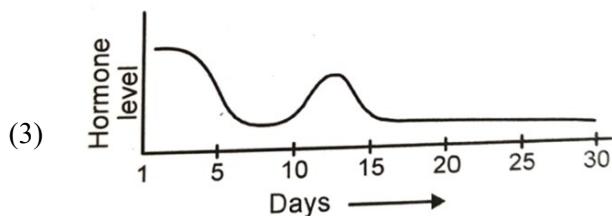
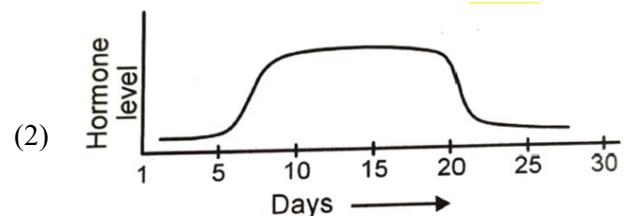
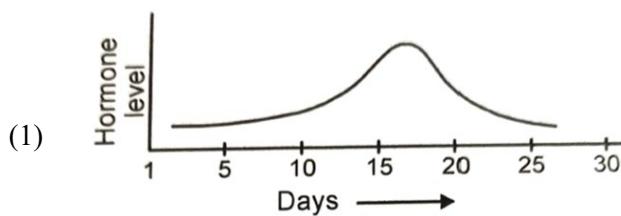
94. Benzodiazepines are –
 (1) Sedative
 (2) Stimulants
 (3) Narcotics
 (4) Hallucinogen

95. Assertion : Pyramid of energy may be upright or inverted.
 Reason : Only 20% of energy goes to next trophic level
 (1) Both Assertion and Reason are true and the Reason is the correct explanation of the Assertion.
 (2) Both Assertion and Reason are true but the Reason is not the correct explanation of the Assertion.
 (3) Assertion is true but Reason is false.
 (4) Both Assertion and Reason are false.


96. Some strains of *Bacillus thuringiensis* produce proteins that kill certain insect such as:
 (1) Lepidopterans like armyworm
 (2) Dipterans like beetles
 (3) Coleopterans like tobacco bud worm
 (4) Lepidopterans like flies

97. In monohybrid cross what is the ratio of homozygous dominant and homozygous recessive individuals in F_2 – generation :-
 (1) 1 : 2 : 1 (2) 2 : 1 / 1 : 2 (3) 3 : 1 / 1 : 3 (4) 1 : 1

98. *Agrobacterium tumefaciens*
 (a) Act as natural genetic engineer
 (b) Contain Ti plasmid essential for insertion of T-DNA into host cells.
 (c) Cause crown gall disease.





Select the option with correct statements only
 (1) a only (2) b and c only (3) a and b only (4) a, b and c

99. Study the given pedigree chart and choose correct statement.

(1) The trait under study is recessive
 (2) Only one parent is heterozygous
 (3) The trait can be X linked recessive
 (4) Trait can be autosomal dominant like cystic fibrosis

100. Which of the following graphs is the correct representation of the level of progesterone in a female who has been using Mala-D as a method of birth control.

MATHEMATICS

61. Let $f(x) = x^3 - 6x^2 + 12x - 3$. Then at $x = 2$, $f(x)$ has
 (1) a maximum
 (3) both a maximum and a minimum
 (2) a minimum
 (4) neither a maximum nor a minimum

62. If $x \in [-1, 1]$ then the minimum value of $f(x) = x^2 + x + 1$ is
 (1) $\frac{3}{4}$
 (2) -15
 (3) $3 - 2\pi$
 (4) None of these

63. A balloon is pumped at the rate of $a \text{ cm}^3/\text{minute}$. The rate of increase of its surface area when the radius is $b \text{ cm}$, is
 (1) $\frac{2a^2}{b^4} \text{ cm}^2/\text{min}$
 (2) $\frac{a}{2b} \text{ cm}^2/\text{min}$
 (3) $\frac{2a}{b} \text{ cm}^2/\text{min}$
 (4) None of these

64. $\int_0^a \{f(x) + f(-x)\} dx$ is equal to
 (1) $2 \int_0^a f(x) dx$
 (2) $\int_{-a}^a f(x) dx$
 (3) 0
 (4) $-\int_{-a}^a f(-x) dx$

65. $\int_{\pi/5}^{3\pi/10} \frac{\cos x}{\cos x + \sin x} dx$ is equal to
 (1) π
 (2) $\frac{\pi}{2}$
 (3) $\frac{\pi}{4}$
 (4) None of these

66. If $y(t)$ is a solution of the equation $(1+t) \frac{dy}{dt} - ty = 1$ and $y(0) = -1$ then $y(1)$ is
 (1) $-\frac{1}{2}$
 (2) $e + \frac{1}{2}$
 (3) $e - \frac{1}{2}$
 (4) $\frac{1}{2}$

67. Let the position vectors of the points A, B, C be $\hat{i} + 2\hat{j} + 3\hat{k}$, $-\hat{i} - \hat{j} + 8\hat{k}$ and $-4\hat{i} + 4\hat{j} + 6\hat{k}$ respectively. Then the ABC is
 (1) right angled
 (2) equilateral
 (3) isosceles
 (4) None of these

68. $(\vec{a} \cdot \vec{i}) \vec{i} + (\vec{a} \cdot \vec{j}) \vec{j} + (\vec{a} \cdot \vec{k}) \vec{k}$ is equal to
 (1) $\vec{i} + \vec{j} + \vec{k}$
 (2) \vec{a}
 (3) $3\vec{a}$
 (4) None of these

69. If \vec{a}, \vec{b} are unit vectors such that $\vec{a} + \vec{b}$ is also a unit vector then the angle between the vectors \vec{a} and \vec{b} is
 (1) $\frac{\pi}{6}$
 (2) $\frac{\pi}{4}$
 (3) $\frac{\pi}{3}$
 (4) $\frac{2\pi}{3}$

70. The direction cosines of a line whose equations are $\frac{x-1}{2} = \frac{y+3}{4} = \frac{z-2}{-3}$ are
 (1) $\frac{1}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{2}{\sqrt{14}}$
 (2) $\frac{2}{\sqrt{29}}, \frac{4}{\sqrt{29}}, \frac{-3}{\sqrt{29}}$
 (3) $\frac{1}{\sqrt{29}}, \frac{-3}{\sqrt{29}}, \frac{2}{\sqrt{29}}$
 (4) $2, 4, -3$

71. If $A^2 = 8A + kI$, where $A = \begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then the value of k is –
 (1) 7
 (2) -7
 (3) 1
 (4) -1

72. The matrix $\begin{bmatrix} \lambda & 7 & -2 \\ 4 & 1 & 3 \\ 2 & -1 & 2 \end{bmatrix}$ is a singular matrix if λ is –
 (1) $\frac{2}{5}$
 (2) $\frac{5}{2}$
 (3) -5
 (4) None of these

73. If $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ b_1 & b_2 & b_3 \\ a_1 & a_2 & a_3 \end{vmatrix}$, then the two triangles whose vertices are $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ and $(a_1, b_1), (a_2, b_2), (a_3, b_3)$ are
 (1) congruent
 (2) similar
 (3) equal in area
 (4) None of these

74. The system of equation $ax + 4y + z = 0$, $bx + 3y + z = 0$, $cx + 2y + z = 0$ has non-trivial solutions if a, b, c are in
 (1) AP
 (2) GP
 (3) HP
 (4) None of these

75. If $f(x) = x^2 - 2x + 3$, find the number of elements in the range of f when domain = $\{-2, 0, 2, 4\}$.
 (1) 2
 (2) 3
 (3) 4
 (4) 1

76. Let $f(x) = \sin^{-1}(\sin x)$. For what value of x in $(0, 2\pi)$ is $f(x)$ maximum?
 (1) $\pi/2$
 (2) $3\pi/2$
 (3) π
 (4) 2π

77. If $f(x) = e^{|x|}$, then the function is
 (1) differentiable everywhere
 (3) continuous but not differentiable at $x = 0$
 (2) non-differentiable at $x = 0$
 (4) both 2 & 3

78. The function $f(x) = |x|$ is
 (1) one-one
 (3) neither one-one nor onto
 (2) onto
 (4) Both

79. If $f(x) = x^3$ and $g(x) = \sqrt[3]{x}$, then $f(g(x)) = ?$
 (1) x
 (2) x^3
 (3) $\sqrt[3]{x}$
 (4) None

80. $\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = ?$
 (1) $\pi/2$
 (2) π
 (3) $\pi/4$
 (4) 0

81. $\cos^{-1}\left(\frac{1}{2}\right) + \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = ?$
 (1) $\pi/3$
 (2) $\pi/2$
 (3) $2\pi/3$
 (4) 0

82. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, find $(\text{adj } A)^{-1}$.
 (1) A
 (2) A^{-1}
 (3) $\text{adj}(A)$
 (4) None

83. If $|A| = 2$ and $|B| = 3$, find $|3A^{-1}B^T|$ for 3×3 matrices.
 (1) $81/2$
 (2) $27/2$
 (3) 54
 (4) None

84. If $f(x) = x^3 - 6x^2 + 12x - 8$, find the nature of $f(x)$.
 (1) strictly increasing
 (3) neither increasing nor decreasing
 (2) strictly decreasing
 (4) constant

85. Minimum value of $\frac{x^2 + 1}{x}$, $x > 0$ is
 (1) 2
 (2) 3
 (3) $\sqrt{2}$
 (4) None

86. If $I = \int_0^{\pi/2} \sin^4 x dx$, then $I = ?$
 (1) $3\pi/16$
 (2) $\pi/4$
 (3) $\pi/8$
 (4) None

87. The differential equation $\frac{dy}{dx} + y \tan x = \sin x$ is solved by integration factor
 (1) $e^{\int \tan^2 x dx}$
 (2) $e^{\int \tan x dx}$
 (3) $e^{\int \sin x dx}$
 (4) None

88. Solution of $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$ is
 (1) $\tan^{-1} y = \tan^{-1} x + C$
 (2) $y = x + C$
 (3) $y = x^2 + C$
 (4) None

89. $\frac{dy}{dx} = y \tan x$, $y(0) = 1 \Rightarrow y = ?$
 (1) $e^{\sin x}$
 (2) $\sec x$
 (3) $\cos x$
 (4) None

90. $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$. If $|\vec{a}| = |\vec{b}| = 1$ and $|\vec{a} \times \vec{b}| = \sqrt{3}/2$, find θ .
 (1) 30°
 (2) 60°
 (3) 120°
 (4) 150°

91. If $\vec{a} = \vec{i} + \vec{j} + \vec{k}$, $\vec{b} = 2\vec{i} + 3\vec{j} + 4\vec{k}$, then projection of \vec{a} on \vec{b} = ?
 (1) $\frac{19}{\sqrt{29}}$
 (2) $\frac{(2+3+4)}{\sqrt{29}}$
 (3) $\frac{9}{29}$
 (4) None

92. Area of parallelogram with diagonals along \vec{a} and \vec{b} is
 (1) $\frac{1}{2} |\vec{a} \times \vec{b}|$
 (2) $|\vec{a} \times \vec{b}|$
 (3) $\frac{1}{4} |\vec{a} \times \vec{b}|$
 (4) None

93. For LPP, feasible region is given by $x \geq 0$, $y \geq 0$, $x + y \leq 10$.
 Maximum of $Z = 3x + 4y$ occurs at
 (1) (0, 10)
 (2) (10, 0)
 (3) (6, 4)
 (4) Both

94. If $P(A) = 0.5$, $P(B) = 0.4$, $P(A \cap B) = 0.1$, then find $P(A \cup B)$.
 (1) 0.8
 (2) 0.7
 (3) 0.9
 (4) None

95. If two dice are thrown, probability that sum is divisible by 4?
 (1) $1/3$
 (2) $1/4$
 (3) $1/6$
 (4) $1/2$

96. Conditional probability $P(A|B) = 2/3$, $P(B) = 1/2$, $P(A \cap B) = ?$
 (1) $1/3$
 (2) $1/2$
 (3) $1/6$
 (4) None

97. $\lim_{x \rightarrow 0} \frac{e^{x^2} - 1}{x^2} = ?$

(1) 1 (2) 2 (3) 4 (4) None

98. The area between curves $y = x^2$ and $y = |x|$ is

(1) $2/3$ (2) $4/3$ (3) $8/3$ (4) None

99. If $y = x^{\sin x}$, then find dy/dx .

(1) $x^{\sin x} (\cos x \ln x - \sin x / x)$ (2) $x^{\sin x} \left(\cos x \ln x + \frac{\sin x}{x} \right)$
(3) both 1 and 2 (4) None

100. If A and B are independent, $P(A|B) = ?$

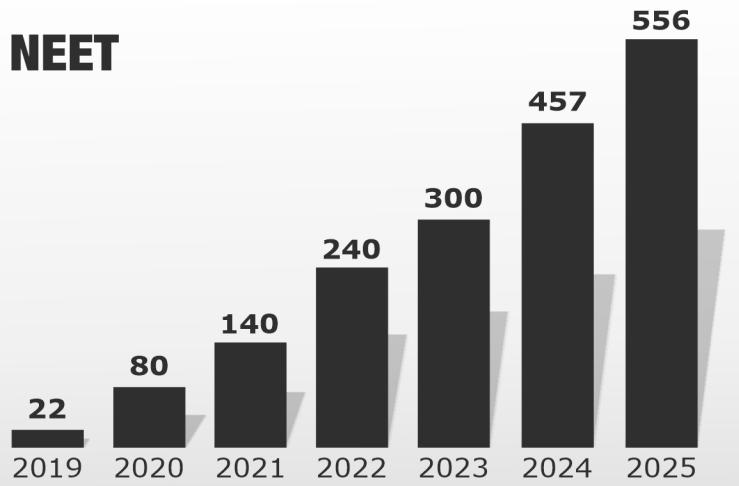
(1) $P(A)$ (2) $P(B)$ (3) 1 (4) None

□ □ □

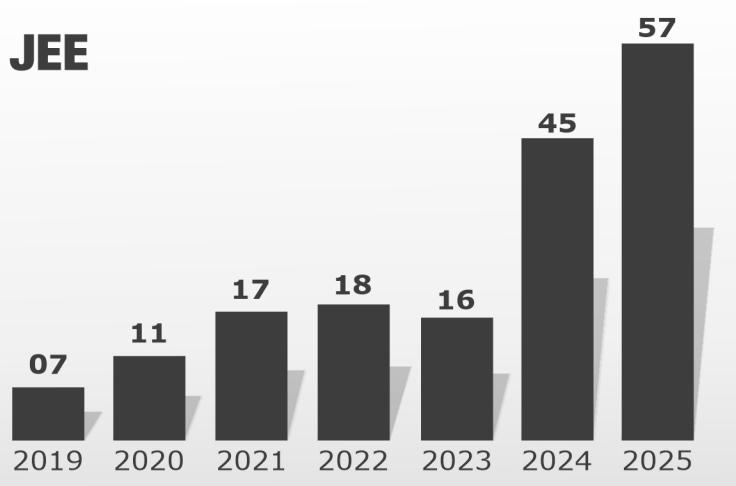
SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK

AJMAL SUPER 40


A TRUSTED PLATFORM FOR NEET & JEE

A PASSIONATE JOURNEY TO AIIMS & IITs - 2025



YEAR WISE ACHIEVEMENTS OF AJMAL SUPER 40

NEET

JEE

ADMISSION CUM SCHOLARSHIP TEST-2026

ONLINE REGISTRATION OPEN FOR 2nd PHASE

FOR ADMISSION INTO

CLASS IX (Nine)

(VIII appearing Boys & Girls can apply)

CLASS XI (Eleven)

(X appearing students can apply)

CHALLENGERS

(XII passed or appeared students can apply)

ONLINE APPLICATION STARTS FROM: 29th DECEMBER 2025

DATE OF TEST

15th MARCH 2026
TIME: 11:00 AM TO 02:00 PM

Classes of Challengers Batch will start from 26th March-2026

For Online Registration Visit @ www.ajmalsuper40.in | 9957979477 | 9678204477 | 9127114763 | 6900121069

AJMAL FOR EDUCATION, EDUCATION FOR ALL.